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A Survey of Spacecraft Charging Events 

Shu T. Lai 
Air Force Research Laboratory 

Hanscom AFB., MA 01731-3010 

This is a survey, or overview, of spacecraft charging events. The emphasis is on 
concepts and physics, rather than enumerative accounts of projects or detailed statistics of 
spacecraft. 

1. Spacecraft Surface Charging 

When an object is placed in a plasma, the 
object is likely charged negatively relative to the 
plasma. The reason is because the plasma electrons, 
being much lighter and faster than the ions, have a 
larger flux than that of ions. As a result, more 
electrons impact on the object surface than ions, 
resulting in a negative surface potential. At 
equilibrium, the negative potential, repelling 
electrons and attracting ions, achieves an equality of 
electron and ion currents. 

2. Adverse Effects 

Spacecraft surface charging may affect the 
scientific measurements onboard, such as 
measurements of the ambient plasma density and 
energy, the ambient electric fields, and geomagnetic 
fields. It may also affect contaminations such as ion 
deposition on the surfaces of spacecraft and mirrors. 
In extreme situations, it may cause stray signals in 
telemetry, undesirable signals in circuits, or even 
erroneous commands in navigation systems. 

3. Where does Spacecraft Charging Occur? 

Surface charging occurs not only in space but 
also in the laboratory. The space physicist is mostly 
concerned with natural charging at geosynchronous 
altitudes and low Earth orbits (LEO). Deep or bulk 
charging occurs in the Radiation Belts. Artificial 
charging can occur during beam emissions from a 
spacecraft or when the spacecraft has a long tether. 

At or near the geosynchronous altitudes, 
spacecraft charging is important not only because 
the ambient plasma density is low and energy 
sometimes high but also there are many spacecraft 
in that region. At these altitudes, the ion flux is 
often two orders of magnitude less than that of 
electrons. Charging up to several kV can occur. 
The spacecraft SCATHA was launched in 1979 for 
dedicated study of spacecraft charging at these 
altitudes. 

There is a local time effect at the 
geosynchronous altitudes. Due to the existence of 
cross-tail electric fields, the plasma coming from the 
magnetic tail towards the Earth would drift towards 
the midnight to dawn sector. Since energetic 
plasmas often come the tail, the midnight to dawn 
sector is where charging likely occurs. 

At LEO altitudes, charging is at low level, 
Volts, only. This is because the ambient plasma in 
this region is dense and not energetic. If the surface 
potential tries to increase, the opposite charges 
would be attracted in abundance to prevent any high 
potential formation. 

Since the ions in LEO are slower than a 
spacecraft, there is a void of ions in the spacecraft 
wake, where the potential tends to be negative. 

The only significant natural charging region in 
the LEO environment is the auroral zone where the 
electrons are often directional and energetic. 

4. Current Balance 

The surface potential at equilibrium is 
determined by the balance of currents, according to 



KirchhofFs circuital law. Besides ambient plasma 
electron and ion currents, photoelectron emission 
plays an important role for high altitude charging in 
sunlight. Artificial beam emissions of electrons, 
ions, or both can greatly control the surface 
potential if the beam currents exceed the ambient 
currents. 

Secondary and backscattered electron emission 
coefficients are properties of surface materials and 
are functions of the primary electron energy. For a 
given surface, if the sum of these coefficients exceeds 
unity, positive charging occurs. This likely occurs 
for many materials when the primary electron 
energies are in the range of about 40 to 1000 eV. 
The surface condition and the angle of electron 
impact can also affect the emissions. The 
coefficients play crucial roles in charging. 

5. Onset of Spacecraft Charging 

When the ambient plasma is quiet, it can be 
described approximately by a Maxwellian distribution 
/(E).       . 

/(£) = n(ml2kT)mejp(-E/kT) 

The current balance equation is given by 

[dEE [6 (£) + x] (£)]/(£) = [dEf(E) 

where 8 and t) are the secondary and backscatterered 
electron emission coefficients respectively. For 
Maxwellian distributions, the solution of this 
equation gives a critical temperature T» [Lai, et al., 
1982,1983; Laframboise, 1982]. 

TABLE 1. Critical Temperatures (eV) 

Material Isotropie Normal 

Kapton 800 
Teflon 2100 
Cu-Be 2100 
Cu-Be (Activated)    5300 
Silver 2700 
Gold 4900 
MgO 3600 
SiO, 2600 

500 
1400 
1300 
3700 
1200 
2900 
2500 
1700 

Figure 1. ATS-5 Spacecraft charging data [Rubin et al., 1980]. 
The existence of a critical temperature manifests. 

When the ambient plasma temperature T is below 
T„ no charging occurs. As T reaches and exceeds 
T„ onset of charging occurs. The charging events 
on ATS-5 agree with the theoretical predictions [Lai, 
1991a]. 

6. Charging in a Double Maxwellian Plasma 

At geosynchronous altitudes, there are 
occasionally energetic (multi-keV) plasma clouds 
arriving from the Sun or the geomagnetic tail. 
When they arrive, the local plasma distribution 
becomes a double Maxwellian approximately: 

/(£)=n1(m/*:ri)
1'2exp(-£Mri) + 

+ n2(m/Jfcr2)
l/2exp(-£/ifcr2) 

The first one is often of low energy (up to 1 keV 
approximately) while the second one many keVs. 
Since secondary and backscattered emissions are 
important in the energy range up to about 1 keV for 
primary electrons, the first Maxwellian distribution 
often favors positive charging. At higher primary 
electron energies, the emission fluxes are small. 
Thus, the second Maxwellian distribution favors 
negative charging. Whether spacecraft charging 
occurs depends on the competition between the two 
Maxwellians. On Day 114 of SCATHA, as the first 
Maxwellian diminishes steadily, the second one wins 



eventually, with onset of charging. This event 
happens to be a triple-root jump, in spacecraft 
potential [Lai, 1991a, 1991b]. 
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Fig.2 Double Maxwellian parameters on Day 114. [Lai, 1991a] 
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Fig.3 Triple-root domain on Day 114. [Lai, 1991a) 

7. Differential Charging 

Since different surface materials have different 
properties such as secondary and backscattered 
emissions, a spacecraft covered with different pieces 
of surface materials may suffer from differential 
charging. It may occur naturally or during beam 
emissions. When electron beams are emitted, 
electrons are drawn from the spacecraft ground 

connected to the beam device. As a result, the 
dielectric surfaces and the ground become 
differentially charged. 

Differential charging is undesirable because it 
tends to induce interactions between surfaces of 
different potentials. Electrons may flow from one 
surface to another, disturbing scientific 
measurements onboard or causing anomalies to 
electronic circuits. In extreme cases, sudden 
developments of differential charging may lead to 
sudden discharges, generating harmful 
electromagnetic pulses. 

The amount of charge Q stored between the 
surface of a thin dielectric layer and the underlying 
spacecraft ground, for example, is given by: 

<? = (ey4/<f)A<t> 

where d is the thickness, A surface area, A<f> the 
potential difference. The amount Q may be large 
for a thin layer, such as a coat of paint. 

8. Damage to Onboard Electronics 

A most dramatic event occurred on SCATHA 
It was the damage of the instruments S2-1 and S2-2 
during the emission of a 13 mA, 1.5 keV, electron 
beam. The spacecraft was charged to near beam 
energy. The instruments were oppositely deployed 
booms of about 3m long for measuring the sheath 
potential. The S2-1 was destroyed when one-third of 
its boom was in shadow and two-thirds in sunlight. 
Half rotation period later, S2-2 rotated into the 
same shadow and was destroyed similarly. This 
event has been fully documented [Cohen et al., 1981] 
but the exact cause was never found. 

9. Anomalies due to Surface Charging 

Anomalies occur occasionally during surface 
charging. For a recent example, a lockup of a 
microprocessor unit on a DMSP satellite [Anderson 
and Koons, 1996] occurred during a surface charging 
event of about 500 V in the auroral zone. The 
layered structure of the thermal dielectric blankets 
on that spacecraft had a large capacitance, and, a 
discharge in the thermal blankets probably caused 



the anomaly [Anderson and Koons, 1996]. 
Vampola [1987] has presented a survey 

discussion on many anomaly events, especially those 
due to deep dielectric charging. 

10. Deep Dielectric Charging 

The Sun controls the Earth's space weather. 
Occasionally the Sun emits an energetic plasma 
cloud called a solar coronal mass ejection. The 
plasma in the cloud often reach MeV and beyond. 
Since energetic electrons and ions can penetrate 
deep into materials, they deposit inside. The depth 
of deposition depends on the energy of the incoming 
electron or ion. At MeV energy, electrons penetrate 
deeper than ions. A MeV plasma impacting on a 
spacecraft surface material would form a double 
layer, the deeper layer being that of electrons. For 
dielectrics, the deposited charges can stay for hours 
and even days. They migrate and escape slowly 
because of the low conductivity of dielectrics, and 
may cause little harm if the flux is low or the 
neutralization process is slow. 

11. Effects of Deep Dielectric Charging 

Deep dielectric charging gives typically very low 
spacecraft surface potential. This is mainly because 
the energetic (MeV) fluxes are small. Furthermore, 
the electrons, although more abundant, are 
deposited deeper than the ions, which are deposited 
nearer the surface. 

Violet and Frederickson [1993] reported that 
many anomaly events occurred on CRRES during 
low spacecraft surface potentials. They occurred 
when CRRES was in the Radiation Belts where 
deep dielectric charging can take place. 

Although the MeV fluxes are usually low, the 
density of charges deposited can accumulate over 
time. Local electric fields can reach up to 106 to 108 

V/m [Hastings and Garrett, 1986] which may cause 
breakdowns. 

Despite their low fluxes, some MeV electrons 
may penetrate into the electronics onboard. It is 
known that there is significant correlation between 
high fluences of electron depositions and anomalies 
in some types of electronic devices. 
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Fig.4    Deep dielectric charging on CRRES.     [Violet and 
Frederickson, 1992]. 
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Fig.5 Deep dielectric charging on DRAS. [Wrenn, 1995] 

At energies of about 100 MeVs or higher, ions 
can penetrate into materials deeper than electrons 
and produce cascades of ionization. Such energetic 
particle fluxes are very small. 

For more on spacecraft anomalies due to the 
radiation environment, see, for example, Lauriente 
et al. [1998]. 

12. AT&T Telstar 401 

On Jan 11, 1997, AT&T Telstar 401 at 
geosynchronous altitudes failed (EOS, 49-51, 1997; 
www-istp.gsfc.nasa.gov/istp/cloudJan97/att.htmland 
umbra.nascom.nasa.gov/istp/ SHINE_report.html). 
A solar coronal mass ejection cloud of energetic 
plasma (MeV) arrived at the geosynchronous region 



a day earlier and the cloud passage lasted a day. 
The Telstar failure occurred after the passage of the 
cloud. While the exact mechanisms of the failure 
are still at large, a common view seems to be deep 
dielectric charging. 

The following figures show the electron and ion 
spectra in a geosynchronous vicinity of Telstar 401 
on Jan 10, 1977. The depths of deposition are 
calculated by using the typical energy-deposition 
relation in Hastings and Garrett [1996]. 
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13. Discussions 

The exact mechanism of the failure may never 
be found. A few comments are as follows: 

(1) The spatial distribution of electron and ion 
depositions is time dependent. Since the electron 
flux is orders of magnitude higher than that of ions, 
the electron layer is formed first. After a cloud 
passage, the ambient plasma is not energetic but 
more dense. The ion layer is then formed near the 
surface. Thus, a discharge is more likely after a 
storm passage. 

(2) Electrons stay inside dielectrics for days. It 
takes time for them to migrate. However, what 
triggers them to avalanche during the migration is 
still unknown. 

A case in point is Vampola's [1987] citation of 
Robbins [1979], who reported that anomalies on 
Meteosat occurred days after the passage of storms, 
not during them. 

Wrenn [1995; 1996] show good correlation 
between high fluences and anomalies on DRAS. 
However, the figures are not plotted in fine time 
scales. 

The Telstar 401 event reminds us of the failure 
of another geosynchronous satellite, ANIK El, 
which occurred after two weeks of energetic 
conditions [Baker, et al., 1997]. 
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